Release Notes 2018.0 – December 2017
New Capabilities

- **Accumulated plastic strain failure indicator**
 - Critical accumulated plasticity as a function of stress triaxiality
 - Additional output: stress triaxiality in the matrix phase
 - Also available for structural analysis with Digimat-CAE and Digimat-RP

- **Improved workflow for microstructure definition of fabrics**
 - Dedicated microstructure type

- **New lattice microstructure type**
 - Applicable to model Fused Filament Fabrication dense microstructures (non-reinforced)
 - Filament cross section definition and visualization
 - Filament orientation
 - Supports Standard failure definition (Composite level)
New Capabilities

- **More efficient post-processing through automatic computation of engineering stress-strain curve**
 - Available for all RVE applications, including void phases and/or cohesive elements

- **Custom weave pattern definition for woven 3D materials**
 - Available for 3D interlock
 - Graphical editor for weave pattern definition

- **Improved workflow for microstructure definition of fabrics**
 - Dedicated microstructure type

- **New lattice microstructure type**
 - Flexible infill definition
 - Aligned (Fused Filament Fabrication application)
 - Sparse (Fused Filament Fabrication application)
 - Double dense sparse (Fused Filament Fabrication application)
 - Hexagonal (Fused Filament Fabrication application)
 - Custom 2D (Fused Filament Fabrication application)
 - Custom definition of microstructure via beams and junctions
 - Custom 3D (All applications)
 - Custom definition of microstructure via beams and junctions
 - Available for non-reinforced and reinforced materials
 - Available for elasticity and plasticity constitutive models

- **User defined failure indicator** (only available with Digimat-FE/Solver)
 - Custom failure library to be built by user
 - Instantaneous stiffness reduction is available
• **Enhancements for microstructures including curved spherocylindrical inclusions**
 o Phase definition now available based on inclusion size, diameter and number of inclusions (leading to inclusion volume fraction computation)
 o More robust geometry and mesh visualization for very large microstructures
 ▪ Geometry visualization through 1D beams and manual mesh generation if estimated mesh size is higher than 1.7M elements
 o Cohesive element definition now possible between matrix and inclusion phase
 ▪ Available for Abaqus, Marc and FE/Solver

• **New visco-hyperelasticity model**
 o Available for Abaqus, Marc and FE/Solver
 ▪ Abaqus models
 • Neo-Hookean
 • Mooney-Rivlin
 • Ogden
 • Storakers
 ▪ Marc and FE/Solver models
 • Neo-Hookean
 • Mooney-Rivlin
 • Ogden

Notice

Digimat-FE export functionality via script (interface to Abaqus/CAE and ANSYS Workbench) is deprecated. Users are advised to use the standard Digimat-FE mesher option as method for FEA model creation.
New Capabilities

- **Naming update**
 - The reverse engineering method “Tensile” is now named “Static and dynamic”

- **Handle shear data**
 - New experimental data loading: shear
 - Experimental data usable for reverse engineering with Static and dynamic method as well as for failure indicator reverse engineering

- **Data ordering filtering**
 - New filtering possibilities in Digimat-MX tables (Grades, Digimat Analysis Files, ...) accessible via direct right-click

- **Reverse engineering for LFRP**
 - New through-thickness definition of fiber aspect ratio and fiber volume fraction in multilayer microstructure definition

- **Reverse engineering for multiple multilayer**
 - Enhanced flexibility for microstructure definition associated to each experimental curve used during reverse engineering
 - Each experimental data can be associated to a different multilayer microstructure
 - Dedicated multilayer failure controls per microstructure
• Update of public database
 • Asahi Kasei
 ▪ New material supplier
 • DSM
 ▪ 11 new grades
 • Dupont
 ▪ 15 new grades
 ▪ 20 new models for existing grades
 • Radici Performance Plastics
 ▪ 4 new grades
 • Sabic
 ▪ 2 new models for existing grades
 • Solvay Specialty Polymers
 ▪ 8 new grades
 • Stratasys Inc
 ▪ New supplier for additive manufacturing
New Capabilities

- Manufacturing data support update
 - Molding
 - Moldflow 3D results
 - Weld line and weld surface data
 - Fiber length
 - Porosity
 - 3D Timon results
 - Fiber length
 - Moldflow UDM mesh format
 - Residual stresses
 - Export extended to LS-Dyna and Marc
 - Additive manufacturing
 - Stratasys Insight results
 - Toolpath (.txt)

- Weld line mapping
 - Export of Digimat weld line file now available in addition to element set export

- Automatic Fiber Placement
 - Loading and visualization of IGES files from AFP manufacturing software
 - Mapping to shell receiver meshes to account for defects (gaps)
 - Thickness modification (soft tooling)
 - Fiber volume fraction (hard tooling)
 - Fiber orientation
 - Export of mapped results
 - Thickness: Abaqus only
 - Fiber volume fraction and fiber orientation: all FEA
• **Air gaps mapping from toolpath files**
 - Identification of local air gaps present in a toolpath on a receiving mesh
 - Export of element set corresponding to mapped gaps location
 - Available for Abaqus, ANSYS, LS-Dyna, Marc, Pam-Crash and Radioss

• **Support of degenerated SOL186 elements (ANSYS) for receiving mesh**
New Capabilities

- CAE maintenance: supported version update
 - ANSYS, 17, 17.2, 18
 - LS-Dyna, 7.1.2, 8.1, 9.0.1, 9.1
 - Marc: 2015, 2016
 - Nastran SOL1XX: 2016 or older, 2016.1, 2017.0, 2018.0
 - Optistruct: V13, V14
 - PERMAS: 16
 - Samcef: V16, V17
 - nCode: 12, 13

- Initial stresses extension
 - Now supported with the Hybrid solution
 - Extended support of FEA software
 - LS-Dyna
 - Marc

- Weld line strength
 - Definition of a strength degradation factor when using a weld line mapped file in the manufacturing data

- Strain rate filtering
 - New parameter to filter spurious oscillations of strain rate values during strain rate dependent FEA runs
 - Available with the Hybrid solution only
 - Applicable to failure models using a (V-)EVP material model
• Stiffness reduction extension
 o Revised formulation to remove time step sensitivity
 o Control on linear softening behavior
 ▪ Definition of equivalent strain from failure initiation to final stiffness reduction
 o Available for
 ▪ Implicit & explicit FEA
 ▪ Solid & shell elements

• Fused Filament Fabrication failure modeling
 o Available for unfilled polymer materials
 o Available with the Hybrid solution

• Support of encrypted files in ACT
 o Encrypted material models now supported via direct assignment method

• Time step computation in LS-DYNA/Explicit
 o Optimized time step computation avoiding possible usage of mass scaling

• Improved stiffness matrix computation in contact and boundary conditions in LS-DYNA/Explicit and Implicit

Bug Fix

• Reading of orientation file during FEA run
 o Previously erroneous behavior: when using an orientation file which does not contain information for all integration points and using the Hybrid solution (using the default keyword Hybrid_minimize_memory = on), orientation data read for integration points beyond first integration point could be erroneous
 o Fix: orientation file data are now read correctly for any integration point even if orientation file does not contain data for each integration point
Notice

- Digi2marc libraries are now directly available from the Digimat installer. No linking operation is required anymore

- Fluent interface is now available on-request
 - Users should contact support@e-xstream.com to obtain the installer

- Virtual.lab interface maintenance is dropped
 - Users willing to access the Virtual.lab interface are advised to use Digimat 2017.1 or previous versions
New Capabilities

- **New user interface**
 - New look and feel
 - Revised workflow
 - Structural model / Digimat material / Manufacturing data / Solution settings
 - User guidance from component definition
 - Manufacturing data type
 - Material type

- **Extended support of molding manufacturing data**
 - Molding
 - Weld line data (SFRP/LFRP)
 - Fiber length distribution (LFRP)
 - Fiber volume fraction distribution (LFRP)
 - Residual stresses (SFRP/LFRP)

- **Support of additive manufacturing**
 - FFF
 - Material: unfilled polymer
 - From Digimat-MX
 - From file
 - Performance (Hybrid solution only)
 - Linear stiffness
 - Elasto plasticity
 - Elasto plasticity + failure
 - Manufacturing data
 - Toolpath (gcode)
 - Residual stresses
• **FDM**
 - Material: unfilled polymer
 - From Digimat-MX (Stratasys materials only)
 - From file (Stratasys materials only)
 - Performance (Hybrid solution only)
 - Linear stiffness
 - Elastoplasticity
 - Elastoplasticity + failure
 - Manufacturing data
 - Toolpath (Insight)
 - Residual stresses

• **SLS**
 - Material: unfilled polymer, bead reinforced polymer
 - From Digimat-MX
 - From file
 - Performance (Hybrid solution only)
 - Linear stiffness
 - Elastoplasticity
 - Elastoplasticity + failure
 - Manufacturing data
 - Global printing direction definition
 - Residual stresses

• **Extension of linear solution**
 - Abaqus now available on top of Nastran Sol1XX, Optistruct and PERMAS
 - Support of thermoelasticity

• **Control of number of material cards**
 - New linear template in Solution settings to control maximum number of material cards: reduction level
New Capabilities

- **PFA formulation enhancement for Unidirectional materials**
 - Available for filled hole and bearing tests

- **User defined material model**
 - Custom material model library to be built by user (full procedure described in Digimat documentation)
 - Definition of input parameters and outputs results in Digimat-VA user interface
 - Applicable to variability scenarios

- **First ply failure material model**
 - Available for Unidirectional composites
 - Based on Tsai–Hill 3D Transversely Isotropic failure indicator
 - Dedicated post-processing
 - Failure indicator output
 - Critical ply identification
 - Driving failure mode output

- **Additional process-related variability**
 - Ply misalignment (angle standard deviation definition)
 - Aligned plies
 - Non-aligned plies

Notice

The enhanced PFA formulation for UD in Digimat-VA 2018.0 can induce small results variations compared to previous Digimat versions, especially when using soft layups.
New capabilities

- **New FDM manufacturing type**
 - Provides access to Stratasys applications
 - Fortus 900mc printer
 - ULTEM 9085 material (available on-request)

- **Support failure modeling (FFF/FDM)**
 - Visualization of support location
 - Definition of interface strength in Material model definition
 - Definition of failure modeling approach
 - Failure index
 - Decohesion
 - Output of failure index value in Results

- **Chamber temperature definition (FFF/FDM/SLS)**
 - Enhanced definition of chamber temperature
 - Constant
 - Variable
 - Variable temperature definition via two interpolation models
 - Linear
 - Exponential
 - Inherent strain computation based on extrema chamber temperatures
 - Visualization of part temperature in results

- **Data management**
 - Support of encrypted material models for Digimat-AM
 - Inherent strain management
 - Can now be saved in Digimat-MX
 - Characterized via user-defined comments
 - Can now be loaded from Digimat-MX
• Anchor pin definition for warpage minimization (FFF/FDM)
 o In Manufacturing step, definition of anchor pin location and diameter
The Material Modeling Company

VISIT
www.e-Xstream.com

INFO REQUEST
info@e-Xstream.com

TECHNICAL SUPPORT
support@e-Xstream.com

Support hotline: +32 10 81 40 82